Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Genes (Basel) ; 15(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38397217

RESUMEN

Different species of toothed whales (Odontoceti) exhibit a variety of tooth forms and enamel types. Some odontocetes have highly prismatic enamel with Hunter-Schreger bands, whereas enamel is vestigial or entirely lacking in other species. Different tooth forms and enamel types are associated with alternate feeding strategies that range from biting and grasping prey with teeth in most oceanic and river dolphins to the suction feeding of softer prey items without the use of teeth in many beaked whales. At the molecular level, previous studies have documented inactivating mutations in the enamel-specific genes of some odontocete species that lack complex enamel. At a broader scale, however, it is unclear whether enamel complexity across the full diversity of extant Odontoceti correlates with the relative strength of purifying selection on enamel-specific genes. Here, we employ sequence alignments for seven enamel-specific genes (ACP4, AMBN, AMELX, AMTN, ENAM, KLK4, MMP20) in 62 odontocete species that are representative of all extant families. The sequences for 33 odontocete species were obtained from databases, and sequences for the remaining 29 species were newly generated for this study. We screened these alignments for inactivating mutations (e.g., frameshift indels) and provide a comprehensive catalog of these mutations in species with one or more inactivated enamel genes. Inactivating mutations are rare in Delphinidae (oceanic dolphins) and Platanistidae/Inioidea (river dolphins) that have higher enamel complexity scores. By contrast, mutations are much more numerous in clades such as Monodontidae (narwhal, beluga), Ziphiidae (beaked whales), Physeteroidea (sperm whales), and Phocoenidae (porpoises) that are characterized by simpler enamel or even enamelless teeth. Further, several higher-level taxa (e.g., Hyperoodon, Kogiidae, Monodontidae) possess shared inactivating mutations in one or more enamel genes, which suggests loss of function of these genes in the common ancestor of each clade. We also performed selection (dN/dS) analyses on a concatenation of these genes and used linear regression and Spearman's rank-order correlation to test for correlations between enamel complexity and two different measures of selection intensity (# of inactivating mutations per million years, dN/dS values). Selection analyses revealed that relaxed purifying selection is especially prominent in physeteroids, monodontids, and phocoenids. Linear regressions and correlation analyses revealed a strong negative correlation between selective pressure (dN/dS values) and enamel complexity. Stronger purifying selection (low dN/dS) is found on branches with more complex enamel and weaker purifying selection (higher dN/dS) occurs on branches with less complex enamel or enamelless teeth. As odontocetes diversified into a variety of feeding modes, in particular, the suction capture of prey, a reduced reliance on the dentition for prey capture resulted in the relaxed selection of genes that are critical to enamel development.


Asunto(s)
Delfines , Ballenas , Humanos , Animales , Filogenia , Ballenas/genética , Delfines/genética , Alineación de Secuencia , Esmalte Dental
3.
Curr Biol ; 34(2): 273-285.e3, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38118449

RESUMEN

Toothed whales (odontocetes) emit high-frequency underwater sounds (echolocate)-an extreme and unique innovation allowing them to sense their prey and environment. Their highly specialized mandible (lower jaw) allows high-frequency sounds to be transmitted back to the inner ear. Echolocation is evident in the earliest toothed whales, but little research has focused on the evolution of mandibular form regarding this unique adaptation. Here, we use a high-density, three-dimensional geometric morphometric analysis of 100 living and extinct cetacean species spanning their ∼50-million-year evolutionary history. Our analyses demonstrate that most shape variation is found in the relative length of the jaw and the mandibular symphysis. The greatest morphological diversity was obtained during two periods of rapid evolution: the initial evolution of archaeocetes (stem whales) in the early to mid-Eocene as they adapted to an aquatic lifestyle, representing one of the most extreme adaptive transitions known, and later on in the mid-Oligocene odontocetes as they became increasingly specialized for a range of diets facilitated by increasingly refined echolocation. Low disparity in the posterior mandible suggests the shape of the acoustic window, which receives sound, has remained conservative since the advent of directional hearing in the aquatic archaeocetes, even as the earliest odontocetes began to receive sounds from echolocation. Diet, echolocation, feeding method, and dentition type strongly influence mandible shape. Unlike in the toothed whale cranium, we found no significant asymmetry in the mandible. We suggest that a combination of refined echolocation and associated dietary specializations have driven morphology and disparity in the toothed whale mandible.


Asunto(s)
Evolución Biológica , Ecolocación , Animales , Ballenas/anatomía & histología , Audición , Sonido , Cráneo/anatomía & histología
4.
Zoology (Jena) ; 153: 126023, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35717730

RESUMEN

The large interspecific variation in marine mammal skull and dental morphology reflects ecological specialisations to foraging and communication. At the intraspecific level, the drivers of skull shape variation are less well understood, having implications for identifying putative local foraging adaptations and delineating populations and subspecies for taxonomy, systematics, management and conservation. Here, we assess the range-wide intraspecific variation in 71 grey seal skulls by 3D surface scanning, collection of cranial landmarks and geometric morphometric analysis. We find that skull shape differs slightly between populations in the Northwest Atlantic, Northeast Atlantic and Baltic Sea. However, there was a large shape overlap between populations and variation was substantially larger among animals within populations than between. We hypothesize that this pattern of intraspecific variation in grey seal skull shape results from balancing selection or phenotypic plasticity allowing for a remarkably generalist foraging behaviour. Moreover, the large overlap in skull shape between populations implies that the separate subspecies status of Atlantic and Baltic Sea grey seals is questionable from a morphological point of view.


Asunto(s)
Phocidae , Animales , Países Bálticos , Cabeza , Cráneo
5.
Proc Biol Sci ; 288(1961): 20211213, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34702078

RESUMEN

The deep sea has been described as the last major ecological frontier, as much of its biodiversity is yet to be discovered and described. Beaked whales (ziphiids) are among the most visible inhabitants of the deep sea, due to their large size and worldwide distribution, and their taxonomic diversity and much about their natural history remain poorly understood. We combine genomic and morphometric analyses to reveal a new Southern Hemisphere ziphiid species, Ramari's beaked whale, Mesoplodon eueu, whose name is linked to the Indigenous peoples of the lands from which the species holotype and paratypes were recovered. Mitogenome and ddRAD-derived phylogenies demonstrate reciprocally monophyletic divergence between M. eueu and True's beaked whale (M. mirus) from the North Atlantic, with which it was previously subsumed. Morphometric analyses of skulls also distinguish the two species. A time-calibrated mitogenome phylogeny and analysis of two nuclear genomes indicate divergence began circa 2 million years ago (Ma), with geneflow ceasing 0.35-0.55 Ma. This is an example of how deep sea biodiversity can be unravelled through increasing international collaboration and genome sequencing of archival specimens. Our consultation and involvement with Indigenous peoples offers a model for broadening the cultural scope of the scientific naming process.


Asunto(s)
Genómica , Ballenas , Animales , Núcleo Celular , Filogenia , Ballenas/anatomía & histología , Ballenas/genética
6.
Curr Biol ; 31(10): 2124-2139.e3, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33798433

RESUMEN

The macroevolutionary transition from terra firma to obligatory inhabitance of the marine hydrosphere has occurred twice in the history of Mammalia: Cetacea and Sirenia. In the case of Cetacea (whales, dolphins, and porpoises), molecular phylogenies provide unambiguous evidence that fully aquatic cetaceans and semiaquatic hippopotamids (hippos) are each other's closest living relatives. Ancestral reconstructions suggest that some adaptations to the aquatic realm evolved in the common ancestor of Cetancodonta (Cetacea + Hippopotamidae). An alternative hypothesis is that these adaptations evolved independently in cetaceans and hippos. Here, we focus on the integumentary system and evaluate these hypotheses by integrating new histological data for cetaceans and hippos, the first genome-scale data for pygmy hippopotamus, and comprehensive genomic screens and molecular evolutionary analyses for protein-coding genes that have been inactivated in hippos and cetaceans. We identified eight skin-related genes that are inactivated in both cetaceans and hippos, including genes that are related to sebaceous glands, hair follicles, and epidermal differentiation. However, none of these genes exhibit inactivating mutations that are shared by cetaceans and hippos. Mean dates for the inactivation of skin genes in these two clades serve as proxies for phenotypic changes and suggest that hair reduction/loss, the loss of sebaceous glands, and changes to the keratinization program occurred ∼16 Ma earlier in cetaceans (∼46.5 Ma) than in hippos (∼30.5 Ma). These results, together with histological differences in the integument and prior analyses of oxygen isotopes from stem hippopotamids ("anthracotheres"), support the hypothesis that aquatic skin adaptations evolved independently in hippos and cetaceans.


Asunto(s)
Artiodáctilos , Evolución Biológica , Cetáceos , Piel/anatomía & histología , Agua , Animales , Artiodáctilos/anatomía & histología , Artiodáctilos/genética , Cetáceos/anatomía & histología , Cetáceos/genética , Genoma , Genómica , Filogenia
7.
Syst Biol ; 70(6): 1077-1089, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33693838

RESUMEN

The family Pteropodidae (Old World fruit bats) comprises $>$200 species distributed across the Old World tropics and subtropics. Most pteropodids feed on fruit, suggesting an early origin of frugivory, although several lineages have shifted to nectar-based diets. Pteropodids are of exceptional conservation concern with $>$50% of species considered threatened, yet the systematics of this group has long been debated, with uncertainty surrounding early splits attributed to an ancient rapid diversification. Resolving the relationships among the main pteropodid lineages is essential if we are to fully understand their evolutionary distinctiveness, and the extent to which these bats have transitioned to nectar-feeding. Here we generated orthologous sequences for $>$1400 nuclear protein-coding genes (2.8 million base pairs) across 114 species from 43 genera of Old World fruit bats (57% and 96% of extant species- and genus-level diversity, respectively), and combined phylogenomic inference with filtering by information content to resolve systematic relationships among the major lineages. Concatenation and coalescent-based methods recovered three distinct backbone topologies that were not able to be reconciled by filtering via phylogenetic information content. Concordance analysis and gene genealogy interrogation show that one topology is consistently the best supported, and that observed phylogenetic conflicts arise from both gene tree error and deep incomplete lineage sorting. In addition to resolving long-standing inconsistencies in the reported relationships among major lineages, we show that Old World fruit bats have likely undergone at least seven independent dietary transitions from frugivory to nectarivory. Finally, we use this phylogeny to identify and describe one new genus. [Chiroptera; coalescence; concordance; incomplete lineage sorting; nectar feeder; species tree; target enrichment.].


Asunto(s)
Quirópteros , Animales , Evolución Biológica , Quirópteros/genética , Evolución Molecular , Filogenia
9.
iScience ; 23(10): 101640, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33103078

RESUMEN

The Indo-Pacific humpback dolphin (Sousa chinensis) is a small inshore species of odontocete cetacean listed as Vulnerable on the IUCN Red List. Here, we report on the evolution of S. chinensis chromosomes from its cetruminant ancestor and elucidate the evolutionary history and population genetics of two neighboring S. chinensis populations. We found that breakpoints in ancestral chromosomes leading to S. chinensis could have affected the function of genes related to kidney filtration, body development, and immunity. Resequencing of individuals from two neighboring populations in the northwestern South China Sea, Leizhou Bay and Sanniang Bay, revealed genetic differentiation, low diversity, and small contemporary effective population sizes. Demographic analyses showed a marked decrease in the population size of the two investigated populations over the last ~4,000 years, possibly related to climatic oscillations. This study implies a high risk of extinction and strong conservation requirement for the Indo-Pacific humpback dolphin.

10.
iScience ; 23(10): 101543, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33083714

RESUMEN

The diversity of the dolphin family was established during a short window of time. We investigated delphinid skull shape evolution, mapping shapes on an up-to-date nuclear phylogeny. In this model, the common ancestor was similar to Lagenorhynchus albirostris. Initial diversification occurred in three directions: toward specialized raptorial feeders of small prey with longer, narrower beaks, e.g., Delphinus; toward wider skulls with downward-oriented rostra and reduced temporal fossae, exemplified by suction feeders, e.g., Globicephala; and toward shorter and wider skulls/rostra and enlarged temporal fossae, e.g., Orcinus. Skull shape diversity was established early, the greatest later developments being adaptation of Steno to raptorial feeding on large prey and the convergence of Pseudorca toward Orcinus, related to handling large prey. Delphinid skull shapes are related to feeding mode and prey size, whereas adaptation to habitat is not marked. Over a short period, delphinid skulls have evolved a diversity eclipsing other extant odontocete clades.

11.
Mol Biol Evol ; 37(7): 2069-2083, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32170943

RESUMEN

The transition to an aquatic lifestyle in cetaceans (whales and dolphins) resulted in a radical transformation in their sensory systems. Toothed whales acquired specialized high-frequency hearing tied to the evolution of echolocation, whereas baleen whales evolved low-frequency hearing. More generally, all cetaceans show adaptations for hearing and seeing underwater. To determine the extent to which these phenotypic changes have been driven by molecular adaptation, we performed large-scale targeted sequence capture of 179 sensory genes across the Cetacea, incorporating up to 54 cetacean species from all major clades as well as their closest relatives, the hippopotamuses. We screened for positive selection in 167 loci related to vision and hearing and found that the diversification of cetaceans has been accompanied by pervasive molecular adaptations in both sets of genes, including several loci implicated in nonsyndromic hearing loss. Despite these findings, however, we found no direct evidence of positive selection at the base of odontocetes coinciding with the origin of echolocation, as found in studies examining fewer taxa. By using contingency tables incorporating taxon- and gene-based controls, we show that, although numbers of positively selected hearing and nonsyndromic hearing loss genes are disproportionately high in cetaceans, counts of vision genes do not differ significantly from expected values. Alongside these adaptive changes, we find increased evidence of pseudogenization of genes involved in cone-mediated vision in mysticetes and deep-diving odontocetes.


Asunto(s)
Evolución Biológica , Cetáceos/genética , Audición/genética , Selección Genética , Visión Ocular/genética , Animales , Silenciador del Gen
12.
Mol Phylogenet Evol ; 146: 106756, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32028032

RESUMEN

Phylogeographic inference has provided extensive insight into the relative roles of geographical isolation and ecological processes during evolutionary radiations. However, the importance of cross-lineage admixture in facilitating adaptive radiations is increasingly being recognised, and suggested as a main cause of phylogenetic uncertainty. In this study, we used a double digest RADseq protocol to provide a high resolution (~4 Million bp) nuclear phylogeny of the Delphininae. Phylogenetic resolution of this group has been especially intractable, likely because it has experienced a recent species radiation. We carried out cross-lineage reticulation analyses, and tested for several sources of potential bias in determining phylogenies from genome sampling data. We assessed the divergence time and historical demography of T. truncatus and T. aduncus by sequencing the T. aduncus genome and comparing it with the T. truncatus reference genome. Our results suggest monophyly for the genus Tursiops, with the recently proposed T. australis species falling within the T. aduncus lineage. We also show the presence of extensive cross-lineage gene flow between pelagic and European coastal ecotypes of T. truncatus, as well as in the early stages of diversification between spotted (Stenella frontalis; Stenella attenuata), spinner (Stenella longirostris), striped (Stenella coeruleoalba), common (Delphinus delphis), and Fraser's (Lagenodelphis hosei) dolphins. Our study suggests that cross-lineage gene flow in this group has been more extensive and complex than previously thought. In the context of biogeography and local habitat dependence, these results improve our understanding of the evolutionary processes determining the history of this lineage.


Asunto(s)
Delfines/clasificación , Animales , Evolución Biológica , Núcleo Celular/genética , Delfines/genética , Ecosistema , Flujo Génico , Genómica , Filogenia , Filogeografía , Stenella/clasificación
13.
Syst Biol ; 69(3): 479-501, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31633766

RESUMEN

The evolution of cetaceans, from their early transition to an aquatic lifestyle to their subsequent diversification, has been the subject of numerous studies. However, although the higher-level relationships among cetacean families have been largely settled, several aspects of the systematics within these groups remain unresolved. Problematic clades include the oceanic dolphins (37 spp.), which have experienced a recent rapid radiation, and the beaked whales (22 spp.), which have not been investigated in detail using nuclear loci. The combined application of high-throughput sequencing with techniques that target specific genomic sequences provide a powerful means of rapidly generating large volumes of orthologous sequence data for use in phylogenomic studies. To elucidate the phylogenetic relationships within the Cetacea, we combined sequence capture with Illumina sequencing to generate data for $\sim $3200 protein-coding genes for 68 cetacean species and their close relatives including the pygmy hippopotamus. By combining data from $>$38,000 exons with existing sequences from 11 cetaceans and seven outgroup taxa, we produced the first comprehensive comparative genomic data set for cetaceans, spanning 6,527,596 aligned base pairs (bp) and 89 taxa. Phylogenetic trees reconstructed with maximum likelihood and Bayesian inference of concatenated loci, as well as with coalescence analyses of individual gene trees, produced mostly concordant and well-supported trees. Our results completely resolve the relationships among beaked whales as well as the contentious relationships among oceanic dolphins, especially the problematic subfamily Delphinidae. We carried out Bayesian estimation of species divergence times using MCMCTree and compared our complete data set to a subset of clocklike genes. Analyses using the complete data set consistently showed less variance in divergence times than the reduced data set. In addition, integration of new fossils (e.g., Mystacodon selenensis) indicates that the diversification of Crown Cetacea began before the Late Eocene and the divergence of Crown Delphinidae as early as the Middle Miocene. [Cetaceans; phylogenomics; Delphinidae; Ziphiidae; dolphins; whales.].


Asunto(s)
Cetáceos/clasificación , Cetáceos/genética , Filogenia , Animales , Biodiversidad , Clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad de la Especie
14.
Mitochondrial DNA B Resour ; 5(1): 257-259, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33366511

RESUMEN

The Atlantic humpback dolphin remains an understudied, critically endangered cetacean species. Here, we describe the first complete mitogenome of Sousa teuszii, derived from an animal stranded on Île des Oiseaux, Sine Saloum, Senegal. The S. teuszii mitogenome is composed of 16,384 base pairs and is 98.1% identical to its closest relative with a mitogenome, Sousa chinensis. Phylogenetic analysis confirms its placement with S. chinensis, as well as the placement of the genus Sousa within subfamily Delphininae.

15.
Mol Phylogenet Evol ; 117: 2-9, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28916155

RESUMEN

Anthropoid primates arose during the Eocene approximately 55 million years ago (mya), and extant anthropoids share a most recent common ancestor ∼40mya. Paleontology has been very successful at describing the morphological phenotypes of extinct anthropoids. Less well understood is the molecular biology of these extinct species as well as the phenotypic consequences of evolutionary variation in their genomes. Here we resurrect the most recent common ancestral anthropoid estrogen receptor ß gene (ESR2) and demonstrate that the function of this ancestral estrogen receptor has been maintained during human descent but was altered during early New World monkey (NWM) evolution by becoming a more potent transcriptional activator. We tested hypotheses of adaptive evolution in the protein coding sequences of ESR2, and determined that ESR2 evolved via episodic positive selection on the NWM stem lineage. We separately co-transfected ESR2 constructs for human, NWM, and the anthropoid ancestor along with reporter gene vectors and performed hormone binding dose response experiments that measure transactivation activity. We found the transactivation potentials of the ancestral and human sequences to be significantly lower (p<0.0001 in each comparison) than that of the NWM when treated with estradiol, the most prevalent estrogen. We conclude the difference in fold activation is due to positive selection in the NWM ERß ligand binding domain. Our study validates inferential methods for detecting adaptive evolution that predict functional consequences of nucleotide substitutions and points a way toward examining the functional consequences of positive Darwinian selection.


Asunto(s)
Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Evolución Molecular , Platirrinos/genética , Selección Genética , Animales , Humanos , Sistemas de Lectura Abierta/genética , Filogenia , Transcripción Genética
16.
Placenta ; 57: 71-78, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28864021

RESUMEN

INTRODUCTION: The placenta is arguably the most anatomically variable organ in mammals even though its primary function is conserved. METHOD: Using RNA-Seq, we measured the expression profiles of 55 term placentas of 14 species of mammals representing all major eutherian superordinal clades and marsupials, and compared the evolution of expression across clades. RESULTS: We identified a set of 115 core genes which is expressed (FPKM ≥10) in all eutherian placentas, including genes with immune-modulating properties (ANXA2, ANXA1, S100A11, S100A10, and LGALS1), cell-cell interactions (LAMC1, LUM, and LGALS1), invasion (GRB2 and RALB) and syncytialization (ANXA5 and ANXA1). We also identified multiple pre-eclampsia associated genes which are differentially expressed in Homo sapiens when compared to the other 13 species. Multiple genes are significantly associated with placenta morphology, including EREG and WNT5A which are both associated with placental shape. DISCUSSION: 115 genes are important for the core functions of the placenta in all eutherian species analyzed. The molecular functions and pathways enriched in the core placenta align with the evolutionarily conserved functionality of the placenta.


Asunto(s)
Evolución Biológica , Mamíferos/metabolismo , Placenta/metabolismo , Transcriptoma , Actinas/metabolismo , Animales , Anexinas/metabolismo , Bovinos , Perros , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Humanos , Mamíferos/anatomía & histología , Ratones , Placenta/anatomía & histología , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo
17.
J Hered ; 107(6): 481-95, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27511190

RESUMEN

The dramatic increase in the application of genomic techniques to non-model organisms (NMOs) over the past decade has yielded numerous valuable contributions to evolutionary biology and ecology, many of which would not have been possible with traditional genetic markers. We review this recent progression with a particular focus on genomic studies of marine mammals, a group of taxa that represent key macroevolutionary transitions from terrestrial to marine environments and for which available genomic resources have recently undergone notable rapid growth. Genomic studies of NMOs utilize an expanding range of approaches, including whole genome sequencing, restriction site-associated DNA sequencing, array-based sequencing of single nucleotide polymorphisms and target sequence probes (e.g., exomes), and transcriptome sequencing. These approaches generate different types and quantities of data, and many can be applied with limited or no prior genomic resources, thus overcoming one traditional limitation of research on NMOs. Within marine mammals, such studies have thus far yielded significant contributions to the fields of phylogenomics and comparative genomics, as well as enabled investigations of fitness, demography, and population structure. Here we review the primary options for generating genomic data, introduce several emerging techniques, and discuss the suitability of each approach for different applications in the study of NMOs.


Asunto(s)
Genómica , Mamíferos/genética , Biología Marina , Animales , Evolución Biológica , Genética de Población , Genoma , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Mamíferos/clasificación , Biología Marina/métodos , Filogenia , Polimorfismo de Nucleótido Simple
18.
J Comp Neurol ; 524(2): 288-308, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26132897

RESUMEN

The human brain and human cognitive abilities are strikingly different from those of other great apes despite relatively modest genome sequence divergence. However, little is presently known about the interspecies divergence in gene structure and transcription that might contribute to these phenotypic differences. To date, most comparative studies of gene structure in the brain have examined humans, chimpanzees, and macaque monkeys. To add to this body of knowledge, we analyze here the brain transcriptome of the western lowland gorilla (Gorilla gorilla gorilla), an African great ape species that is phylogenetically closely related to humans, but with a brain that is approximately one-third the size. Manual transcriptome curation from a sample of the planum temporale region of the neocortex revealed 12 protein-coding genes and one noncoding-RNA gene with exons in the gorilla unmatched by public transcriptome data from the orthologous human loci. These interspecies gene structure differences accounted for a total of 134 amino acids in proteins found in the gorilla that were absent from protein products of the orthologous human genes. Proteins varying in structure between human and gorilla were involved in immunity and energy metabolism, suggesting their relevance to phenotypic differences. This gorilla neocortical transcriptome comprises an empirical, not homology- or prediction-driven, resource for orthologous gene comparisons between human and gorilla. These findings provide a unique repository of the sequences and structures of thousands of genes transcribed in the gorilla brain, pointing to candidate genes that may contribute to the traits distinguishing humans from other closely related great apes.


Asunto(s)
Encéfalo/metabolismo , Expresión Génica/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , ARN/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Perfilación de la Expresión Génica , Gorilla gorilla/anatomía & histología , Humanos/anatomía & histología , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Filogenia , Especificidad de la Especie , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta 2 Glicoproteína I/genética , beta 2 Glicoproteína I/metabolismo
19.
R Soc Open Sci ; 2(9): 150156, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26473040

RESUMEN

Recent studies have reported multiple cases of molecular adaptation in cetaceans related to their aquatic abilities. However, none of these has included the hippopotamus, precluding an understanding of whether molecular adaptations in cetaceans occurred before or after they split from their semi-aquatic sister taxa. Here, we obtained new transcriptomes from the hippopotamus and humpback whale, and analysed these together with available data from eight other cetaceans. We identified more than 11 000 orthologous genes and compiled a genome-wide dataset of 6845 coding DNA sequences among 23 mammals, to our knowledge the largest phylogenomic dataset to date for cetaceans. We found positive selection in nine genes on the branch leading to the common ancestor of hippopotamus and whales, and 461 genes in cetaceans compared to 64 in hippopotamus. Functional annotation revealed adaptations in diverse processes, including lipid metabolism, hypoxia, muscle and brain function. By combining these findings with data on protein-protein interactions, we found evidence suggesting clustering among gene products relating to nervous and muscular systems in cetaceans. We found little support for shared ancestral adaptations in the two taxa; most molecular adaptations in extant cetaceans occurred after their split with hippopotamids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...